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1. Introduction 

Rapid and robust scene understanding is a critically important goal for enhanced 
robot autonomy;1 however, the interpretation of spatially and temporally changing 
image scenes due to varying environmental conditions can pose serious challenges 
for computer vision processes, such as those associated with vision-based place 
recognition and navigation.2,3 Such challenges also can extend to interpreting 
changing scenes due to visual motion of objects within the field of view.4 As Tu et 
al.4 discuss, adverse weather or illumination conditions can make the appearance of 
moving objects unclear, so that identifying moving objects in outdoor environments 
becomes more difficult for robot vision systems. As an example, time- and space-
dependent environmental effects on image contrast and resolution can be brought 
about by rain and snow weather events, fog, smoke, obscurants or other changes in 
lighting and visibility.5 Alternately, visually degraded or blurred images due to the 
motion of objects can occur due to rapid movements or long exposure times in both 
single frames and sequences of recorded images.2,6  

With regard to lighting variations, Andreev et al.7 described a method to estimate 
the effect of space and time changes in scene illumination on the optical flow field 
in a movie. Their research7 is unique, because there have been many optical flow 
approaches used to detect motion of objects in a scene that do not have the scope 
of space and time scaling and analysis, even though they may be helpful in a variety 
of applications.8–10 Also, camera motion may introduce some unmanageable 
artifacts with the gradient-based optical flow approach if it is not augmented by 
more sophisticated spatio-temporal analyses.11–13 Other difficulties in image motion 
analysis can arise if objects in the scene have reflections; when new objects appear 
or old ones disappear; or when describing transparent motions, for example, the 
motion of objects behind smoke, foliage, or a fence.13 Here, in addition to capturing 
the motion of individual objects, it appears necessary to capture the relative motion 
between individual objects and the time and space resolutions of the information 
being collected. 

To help mitigate some of the difficulties associated with the measurement and 
analysis of changing scenes, I propose that it is important to consider the space and 
time scales of image data from the very beginning of the data collection process. 
Incorporating key space and time scale information at the time of recording not 
only helps to systematically characterize the measured data but can provide the 
future analyst with a top-down approach to determine what analysis or computer 
vision tasks are feasible with the available data. This kind of enhanced analysis and 
decision making may also be applied to future autonomous systems. Alternately, if 
an image analysis or computer vision objective is pre-known then it would be useful 
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to determine what image resolutions are needed to enable more intelligent data 
collection. If neglected, the end user advantages provided by space and time scale 
characterization may be inextricably lost.  

In this report, I begin to explore the space and time scales of image data as they are 
related to the measurement and analysis of changing image scenes, and whether 
scene variations are due to environmental conditions or the motion of objects within 
the field of view or both. 

2. Space and Time Scales 

2.1 Primary Space and Time Scales 

This section provides a framework to help categorize the spatial and temporal 
properties of image data. Relevant time scales include, but are not limited to, the 
shutter exposure time, the time interval between frames, time over which images 
are captured in a sequence, and the time over which there is visual motion of objects 
inside the field of view. Space scales include, but are not limited to, the field of 
view, depth of view, image resolution, pixel size, pixel separation, color matrix 
size, scene color or shading variations as a function of spatial location, spatial 
smearing of moving elements in the field of view, spatial smearing due to optical 
turbulence and environmental/ weather effects, and smearing of textures in the field 
of view. Naturally, the smearing of elements in the field of view can also be related 
to the temporal resolution of the image data. Figure 1 illustrates the primary space 
and time scales, which can be used to describe the various spatial and temporal 
resolutions of objects and/or activities in a recorded image scene. Here, Δs and Δt 
represent changes in position and time, respectively.  

 

Fig. 1 Primary space (s) and time (t) scales 
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2.2 Image Resolution and Field of View 

To begin to demonstrate the impact of varying image resolution and field of view 
on scene analysis, try to identify the 3 dome shapes shown in Fig. 2. Without some 
additional information related to the object size, texture, or shape in relationship to 
other objects that may be visible in an expanded field of view, it is difficult to 
correctly identify and label these familiar images. Furthermore, distinguishing 
various image details, even in ideal conditions with regard to lighting and visibility, 
can depend on the image contrast and resolution, where image resolution here refers 
to the numbers of pixels that comprise the image data input. Interestingly, 
Torralba14 reported that for human vision the brain can comprehend the gist of an 
image scene remarkably quickly, whether low resolution or high resolution images 
are used. He concluded that images at the resolution of 32 x 32 color pixels can 
provide an observer enough information to correctly identify the semantic category 
and general layout of an indoor/outdoor scene. For example, in Fig. 2 the main 
“dome” category for these low resolution images is identifiable. However, if we 
consider Fig. 3, which contains expanded fields of view and higher resolution 
images from which the elements in Fig. 2 were taken, then the building domes and 
many additional image details can be identified over a much wider range of spatial 
scales. 

 

Fig. 2 Can you correctly identify these images? Image resolution: a) 30 x 20 pixels,  
b) 30 x 14 pixels, and c) 30 x 16 pixels. 

 

Fig. 3 Higher resolution image scenes corresponding to the 3 shapes shown in Fig. 2. 
a) photo: Taj Mahal (desktopdress.com), b) photo: US Capitol Dome (Library of Congress), 
and c) photo: nuclear power plant, Bushehr, Iran (Behrouz Mehri/AFP/Getty Images). 
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Let’s examine image resolution more closely. Can you identify the 2 extracted 
objects shown in Fig. 4 without some additional context? What if we look at the 
complete image (Fig. 5) from which the objects were taken? In this case, at low 
resolution, it is quite difficult to discern any individual elements in the field of view. 

 

Fig. 4 Can you correctly identify these objects? 

 

Fig. 5 Low resolution images of the scene from which the objects in Fig. 4 were taken, 
where neither large nor small objects are discernible. (Left: 16 x 10 image pixels,  
Right: 32 x 20 image pixels.) 

Imagine you are in new surroundings and you only have a low resolution, e.g.,  
32 x 32 pixels, imaging camera that can be used for wide area coverage. However, 
you can change lenses on the camera to narrow your field of view such that a region 
of the scene that was previously imaged by a single pixel is now imaged with  
32 x 32 pixels (Fig. 6). If applied to every pixel location in the original image 
matrix, the image resolution of the wide area view would be increased to  
1024 x 1024 pixels. However, this would require much more time and data 
collection on your part, and large amounts of data transmission is often costly, i.e., 
bandwidth limited. Given that you are likely to be more selective in recording the 
narrower fields of view, e.g., focusing on an identified area of interest, it would be 
helpful to develop some useful strategies to enable rapid and robust scene analysis. 
As an example, Warnell et al.15 recently discussed concepts associated with visual 
saliency to enable enhanced camera control for tasks such as automatic navigation 
and scene exploration. Saliency estimation, which is a computational identification 
of various elements in a scene that are likely to catch the attention of a human 
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observer, is a valuable tool in image analysis and processing.16 Nevertheless, future 
work may include extending these concepts to interpreting changing (dynamic) 
scenes,15 such as those described above. 
 

 

Fig. 6 Framework for follow on numerical experiments to focus on scene analysis 
strategies 

Such a problem can be investigated and characterized through a series of human-
in-the-loop numerical experiments. For example, it may be useful at first to develop 
a general object searching algorithm that focuses on the narrow fields of view at 
randomly selected locations within an identified area of interest. Then, one can 
begin to analyze how many randomly revealed narrow fields of view would be 
needed to clearly identify specific object shapes and textures or to capture the gist 
of the image scene (as discussed by Torralba).14 Later on, this approach can be 
expanded using a different or improved strategy. 

Of course, the degree of image resolution needed for a particular task depends on 
the analysis or computer vision problem of interest.2,17–22 For example, with regard 
to image analysis and labeling, compare the low resolution images in Fig. 5 to the 
slightly higher resolution images shown in Fig. 7. When the image resolution is 
increased to 64 x 40 pixels and greater, one can more easily identify the layout and 
main elements of the image scene, such as the reactor dome and hard hat shown 
above. However, if still higher resolution images of this reactor site are analyzed 
(Fig. 8) then additional details and information may be gained, for example, 
intelligence relating to its operational status. By analyzing the extracted and labeled 
objects shown in Fig. 8 one might ask if the reactor site is still under construction 
or near completion as evidenced by the engineers wearing hard hats, the surveyor, 
the hoist, and the electrical hazard sign. Note here that the hoist, surveyor and 
engineers wearing hard hats in the far-field of the imaged scene all required 
increased resolution, i.e., ≥32 x 32 pixels, to be clearly identified (visually compare 



 

6 
 

right vs. left in Fig. 8). Table 1 provides the image resolution details in numbers of 
pixels for these labeled objects. 

 

Fig. 7 Same images as shown in Fig. 5 but with slightly higher resolution. Left: 64 x 40 
image pixels. Right: 128 x 80 image pixels. 

 

Fig. 8 Same images as shown in Figs. 5 and 7 but with even higher resolution. Left: 525 x 
336 image pixels. Right: 3888 x 2492 image pixels. Note that the hoist, surveyor and engineers 
wearing hard hats in the far-field of the imaged scene all required increased image resolution 
to be clearly identified. 

Table 1 Image resolution information (in numbers of pixels) 

 Fig. 8 (Left) Fig. 8 (Right) 
Main image 525 x 336 3888 x 2492 
Reactor Dome 191 x 51 1028 x 256 
Hard Hat 82 x 45 405 x 225 
Danger Sign 32 x 36 64 x 69 
Hoist 5 x 24 39 x 175 
Surveyor 5 x 11 34 x 74 
Engineers 5 x 5  32 x 41 

 
In this section, we have shown an example of varying image resolution as it relates 
to detailed analysis and labeling of this outdoor scene. In follow-on research, we 
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can similarly explore the impact of varying time scale related image resolution on 
scene analysis using sequences of recorded images. 

3. Image Data Input 

There are several key pieces of information that can be identified as new image data 
are being recorded that are important and accessible, but usually overlooked or left 
undocumented. For example, one can readily identify a timestamp, the global 
positioning system (GPS) position, the prevailing environmental and weather 
conditions, the field of view, depth of view, and image resolution, as noted above. 
Table 2 provides a list of several space and time scale dependent elements that can 
be incorporated with measured image data. The first group focuses on 
environmental effects, such as the weather, cloud cover, ground and road 
conditions, and visibility. Identifying environmental conditions is an effective way 
to categorize diverse data sets of image scenes for later use and analysis. For 
example if, at a later time, an end user needs to find image data with a certain 
resolution in raining or low-light conditions, then incorporating the space-time 
related elements listed in Table 2 at the time of recording the data can provide the 
desired benefit.  

In addition, changing environmental conditions can affect image contrast and 
resolution due to weather events and changes in visibility or cloud cover and these 
effects often coincide with lighting changes in an imaged scene, e.g., those due to 
increased scattering and attenuation of light in adverse weather conditions.5 Time 
of day and sun angle information can be useful also to highlight conditions when 
increased glare, shadows, or silhouettes can cause difficulties for image analysis 
and computer vision related processes.20,23,24 Taking note of fog, smoke, obscurants, 
and optical turbulence conditions is also important because these effects can 
significantly degrade image quality due to spatial smearing of shapes, textures, and 
moving elements in an imaged scene25 Similarly, identifying ground and road 
conditions, e.g., wet or dry, icy, sand, or gravel, can be used in subsequent image 
analyses or can support autonomous systems with regard to navigation tasks, 
tracking personnel, or detecting vehicles. 

The second group in Table 2 lists elements related to the image data measurements 
themselves, e.g., the spatial and temporal image resolutions, field of view, and 
depth of view. Together with the environmental effects, these data can be used as a 
basic building block for the analysis of changing image scenes. 
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Table 2 Incorporating key space and time scale related information as image data are 
being collected 

Environmental Effects 

Weather conditions (rain, snow, haze, fog, or hail) 

Sun angle, sky, and cloud cover 

Ground/road conditions (dry, wet, icy, sand, gravel, rocky, etc.) 

Visibility (fog, smoke, obscurants, or optical turbulence) 

Image Data Measurements 

GPS position 

Timestamp (relative to sun angle or relative to a world clock) 

Image resolution 

Pixel size and pixel separation 

Field of view and depth of view 

Shutter exposure time and time interval between image frames 

Time over which images are captured in a sequence 

4. Image Motion Characterization 

Polana and Nelson26 suggested that image motion in a scene can be categorized into 
3 parts. The first group of motions are those having statistical regularities, i.e., they 
are repeatable in both space and time, such as the action of water waves or the 
motion of clouds, trees, and leaves. In contrast, the second group consists of 
activities, repeatable over time but not over space, such as people walking, biking, 
or talking. The third group includes motion events11 that are not repeatable in either 
space or time, such as a person throwing a ball or entering a room. According to 
Laptev,11 such events correspond to features in the image scene appearing or 
disappearing and with non-constant motion, which often correspond to changes or 
discontinuities in velocity and acceleration. An alternate method for motion event 
analysis based on visual attention and temporal salience has been discussed by 
Thomas.27 

In follow-on research, we can develop additional numerical algorithms and 
experiments that can be implemented using new or existing data sets to help 
recognize the motion of individual objects in a scene and mitigate any undesirable 
artifacts due to camera motion.12 Briefly, we can express the optical flow (i.e., 
image gradient) velocity (𝑢𝑢�⃗ ) of a moving object in a scene as 

 𝑢𝑢�⃗ =  𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝑣⃗𝑣 (𝑥𝑥𝚤𝚤���⃗ , 𝑡𝑡𝑚𝑚) +  𝑤𝑤��⃗ , (1) 
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where, 𝑣⃗𝑣 is the velocity of an individual element in the image, which is a function 
of position, 𝑥𝑥1���⃗ =  𝑥𝑥1 +  𝑥𝑥2 +  𝑥𝑥3, and time (of successive frames), 𝑡𝑡𝑚𝑚 =  𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3... 
Also in Eq. 1, 𝑤𝑤��⃗  is the velocity of the camera motion from one image frame to the 
next, which in some cases is considered a constant. Next, we define the divergence 
of the optical flow velocity as 

 ∇𝑢𝑢�⃗ =  ∂𝑢𝑢1
∂𝑥𝑥1

+  ∂𝑢𝑢2
∂𝑥𝑥2

+  ∂𝑢𝑢3
∂𝑥𝑥3

, (2) 

and realize from Eqs. 1 and 2 that if one adds a constant (𝑤𝑤��⃗ ) to the velocity field, 
then the divergence of the velocity field (∇𝑢𝑢�⃗ ) remains unchanged. We can also 
explore the optical flow acceleration (𝑎⃗𝑎) and its divergence (∇𝑎⃗𝑎) in a similar 
manner. We anticipate that our research results will provide many useful insights 
toward developing novel strategies for the analysis of space and time varying 
scenes. 

5. Summary and Conclusions 

In this report, I began to explore the space and time scale aspects of image data as 
they are related to the measurement and analysis of changing image scenes, and 
whether scene variations are due to environmental conditions or the motion of 
objects within the field of view or both. I showed an example that demonstrated the 
impact of varying image resolution on the detailed analysis and labeling of an 
outdoor scene. I also provided a list of several space and time scale dependent 
elements that, if incorporated at the start of the image data measurement process, 
can provide an end user with a better organized, top-down approach to determine 
what analysis or computer vision tasks are feasible with the available data. Finally, 
I discussed image motion characterization and proposed a follow-on research study 
to develop numerical algorithms and experiments to explore and analyze changing 
image scenes with new or existing data sets. I anticipate that this research will help 
to advance Army relevant technologies in scene understanding for enhanced robot 
autonomy. 
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